Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Schizophr Res ; 269: 1-8, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38703518

ABSTRACT

One of the main tasks of the human visual system is to organize the temporal flow of visual events into meaningful patterns. It has been suggested that segregation/integration of continuous visual stimuli relies on temporal windows that are phase-locked to brain oscillations in the alpha frequency range (~10 Hz). From a behavioral point of view, the balance between integration and segregation is reflected in visual temporal acuity: the ability to perceive a small temporal gap between two identical stimuli. Disruption of this balance may lead to impairment of perceptual organization processes. Notably, schizophrenia, a condition characterized by unusual perceptual experiences, has been associated with abnormal temporal processing of sensory stimuli and aberrant oscillations. We asked a large cohort of healthy participants to complete an online version of the two-flash fusion task and two questionnaires for schizotypal personality traits to investigate individual differences in the temporal resolution of perception, particularly its relationship with anomalous perceptual experiences. We found that two-flash discrimination acuity declines with age and that schizotypal traits are associated with better performances. Although this association was strong for perceptual and cognitive subscales, we found that this result could not be attributed to response biases (e.g., hallucination of two flashes). While these results appear to contrast with findings of slower alpha rhythms and sensory processing in schizotypy, we propose that a faster visual rate could be the consequence of an oscillopathy or a disconnection between different sensory modalities and their physiological pacemaker.

2.
Soc Cogn Affect Neurosci ; 19(1)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38334689

ABSTRACT

Neuroticism is a personality trait with great clinical relevance, defined as a tendency to experience negative affect, sustained self-generated negative thoughts and impaired emotion regulation. Here, we investigated spontaneous brain dynamics in the aftermath of negative emotional events and their links with neuroticism in order to shed light on the prolonged activity of large-scale brain networks associated with the control of affect. We recorded electroencephalography (EEG) from 36 participants who were asked to rest after watching neutral or fearful video clips. Four topographic maps (i.e. microstates classes A, B, C and D) explained the majority of the variance in spontaneous EEG. Participants showed greater presence of microstate D and lesser presence of microstate C following exposure to fearful stimuli, pointing to changes in attention- and introspection-related networks previously associated with these microstates. These emotional effects were more pronounced for participants with low neuroticism. Moreover, neuroticism scores were positively correlated with microstate C and negatively correlated with microstate D, regardless of previous emotional stimulation. Our results reveal distinctive effects of emotional context on resting-state EEG, consistent with a prolonged impact of negative affect on the brain, and suggest a possible link with neuroticism.


Subject(s)
Brain , Electroencephalography , Humans , Neuroticism , Brain/physiology , Brain Mapping/methods , Emotions
3.
J Cogn Neurosci ; 36(4): 590-601, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37043238

ABSTRACT

The brain organizes the continuous flow of sensory input by parsing it into discrete events. In the case of two flashes separated by a brief ISI, for example, perception may be of a single flash or two distinct flashes, depending on the ISI but also on the speed of processing. A number of studies have reported evidence that participants with a higher EEG peak alpha frequency are able to detect the presence of two flashes separated by short intervals, whereas those with slower alpha report only one flash. Other studies have not found this correlation. We investigated potential factors that might mask the relationship between individual alpha frequency and visual perception. We recorded resting-state EEG from a large sample of participants (n = 50) and measured the temporal resolution of visual perception with the two-flash fusion task. We found that individual alpha frequency over posterior channels predicted the two-flash fusion threshold, in line with previous studies, but this correlation was significant only when taking into account the steepness of the psychophysical curve of the two-flash task. Participants with a relatively shallow psychophysical curve, likely reflecting high sensory and/or decision noise, failed to show this relationship. These findings replicate previous reports of a correlation between alpha frequency and visual temporal resolution, while also suggesting that an explanation of two-flash fusion performance that neglects the role of internal noise might be insufficient to account for all individual differences.


Subject(s)
Brain , Visual Perception , Humans , Photic Stimulation
4.
Sci Rep ; 13(1): 5830, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037892

ABSTRACT

Every time we move our eyes, the retinal locations of objects change. To distinguish the changes caused by eye movements from actual external motion of the objects, the visual system is thought to anticipate the consequences of eye movements (saccades). Single neuron recordings have indeed demonstrated changes in receptive fields before saccade onset. Although some EEG studies with human participants have also demonstrated a pre-saccadic increased potential over the hemisphere that will process a stimulus after a saccade, results have been mixed. Here, we used magnetoencephalography to investigate the timing and lateralization of visually evoked planar gradients before saccade onset. We modelled the gradients from trials with both a saccade and a stimulus as the linear combination of the gradients from two conditions with either only a saccade or only a stimulus. We reasoned that any residual gradients in the condition with both a saccade and a stimulus must be uniquely linked to visually-evoked neural activity before a saccade. We observed a widespread increase in residual planar gradients. Interestingly, this increase was bilateral, showing activity both contralateral and ipsilateral to the stimulus, i.e. over the hemisphere that would process the stimulus after saccade offset. This pattern of results is consistent with predictive pre-saccadic changes involving both the current and the future receptive fields involved in processing an attended object, well before the start of the eye movement. The active, sensorimotor coupling of vision and the oculomotor system may underlie the seamless subjective experience of stable and continuous perception.


Subject(s)
Magnetoencephalography , Saccades , Humans , Eye Movements , Vision, Ocular , Neurons/physiology , Photic Stimulation
5.
J Vis ; 22(11): 13, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36269191

ABSTRACT

The ability to interpret spatiotemporal contingencies in terms of causal relationships plays a key role in human understanding of the external world. Indeed, the detection of such simple properties enables us to attribute causal attributes to interactions between objects. Here, we investigated the degree to which this perception of causality depends on recent experience, as has been found for other low-level properties of visual stimuli. Participants were shown launching sequences of colliding circles with varying collision lags and were asked to report their impression of causality. We found short-term attractive and long-term repulsive and attractive effects of perceptual history on the interpretation of causality. Stimuli directly following a causal impression were more likely to be judged as causal and vice versa. However, prior judgments on less recent (>5) trials biased current perception with both positive/attractive and negative/repulsive influences. We interpret these results in terms of two potential mechanisms: adaptive temporal binding windows and updating of internal representations of causality. Overall, these results demonstrate the important role of prior experience even for causality, a fundamental building block of how we understand our world.


Subject(s)
Judgment , Humans , Causality
SELECTION OF CITATIONS
SEARCH DETAIL
...